The Evolution of Reverse Gyrase Suggests a Nonhyperthermophilic Last Universal Common Ancestor

Author:

Catchpole Ryan J12ORCID,Forterre Patrick12

Affiliation:

1. Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France

2. Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, University of Paris-Saclay, Gif-sur-Yvette, France

Abstract

AbstractReverse gyrase (RG) is the only protein found ubiquitously in hyperthermophilic organisms, but absent from mesophiles. As such, its simple presence or absence allows us to deduce information about the optimal growth temperature of long-extinct organisms, even as far as the last universal common ancestor of extant life (LUCA). The growth environment and gene content of the LUCA has long been a source of debate in which RG often features. In an attempt to settle this debate, we carried out an exhaustive search for RG proteins, generating the largest RG data set to date. Comprising 376 sequences, our data set allows for phylogenetic reconstructions of RG with unprecedented size and detail. These RG phylogenies are strikingly different from those of universal proteins inferred to be present in the LUCA, even when using the same set of species. Unlike such proteins, RG does not form monophyletic archaeal and bacterial clades, suggesting RG emergence after the formation of these domains, and/or significant horizontal gene transfer. Additionally, the branch lengths separating archaeal and bacterial groups are very short, inconsistent with the tempo of evolution from the time of the LUCA. Despite this, phylogenies limited to archaeal RG resolve most archaeal phyla, suggesting predominantly vertical evolution since the time of the last archaeal ancestor. In contrast, bacterial RG indicates emergence after the last bacterial ancestor followed by significant horizontal transfer. Taken together, these results suggest a nonhyperthermophilic LUCA and bacterial ancestor, with hyperthermophily emerging early in the evolution of the archaeal and bacterial domains.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3