Within-cluster resampling for multilevel models under informative cluster size

Author:

Lee D1,Kim J K1,Skinner C J2

Affiliation:

1. Department of Statistics, Iowa State University, 2438 Osborn Drive, Ames, Iowa 50011, USA

2. Department of Statistics, London School of Economics and Political Science, Houghton Street, London, WC2A 2AE, UK

Abstract

Summary A within-cluster resampling method is proposed for fitting a multilevel model in the presence of informative cluster size. Our method is based on the idea of removing the information in the cluster sizes by drawing bootstrap samples which contain a fixed number of observations from each cluster. We then estimate the parameters by maximizing an average, over the bootstrap samples, of a suitable composite loglikelihood. The consistency of the proposed estimator is shown and does not require that the correct model for cluster size is specified. We give an estimator of the covariance matrix of the proposed estimator, and a test for the noninformativeness of the cluster sizes. A simulation study shows, as in Neuhaus & McCulloch (2011), that the standard maximum likelihood estimator exhibits little bias for some regression coefficients. However, for those parameters which exhibit nonnegligible bias, the proposed method is successful in correcting for this bias.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference15 articles.

1. Mean estimating equation approach to analysing cluster-correlated data with nonignorable cluster sizes;Benhin,;Biometrika,2005

2. A joint modeling approach to data with informative cluster size: robustness to the cluster size model;Chen,;Statist. Med.,2011

3. Efficient estimation methods for informative cluster size data;Chiang,;Statist. Sinica,2008

4. Maximum likelihood from incomplete data via the EM algorithm;Dempster,;J. R. Statist. Soc. B,1977

5. A Bayesian approach for joint modeling of cluster size and subunit-specific outcomes;Dunson,;Biometrics,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3