Integrating the evidence from evidence factors in observational studies

Author:

Karmakar B1,French B2,Small D S1

Affiliation:

1. Department of Statistics, The Wharton School, University of Pennsylvania, 3730 Walnut Street, Philadelphia, Pennsylvania 19104-6340, U.S.A

2. Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan

Abstract

Summary A sensitivity analysis for an observational study assesses how much bias, due to nonrandom assignment of treatment, would be necessary to change the conclusions of an analysis that assumes treatment assignment was effectively random. The evidence for a treatment effect can be strengthened if two different analyses, which could be affected by different types of biases, are both somewhat insensitive to bias. The finding from the observational study is then said to be replicated. Evidence factors allow for two independent analyses to be constructed from the same dataset. When combining the evidence factors, the Type I error rate must be controlled to obtain valid inference. A powerful method is developed for controlling the familywise error rate for sensitivity analyses with evidence factors. It is shown that the Bahadur efficiency of sensitivity analysis for the combined evidence is greater than for either evidence factor alone. The proposed methods are illustrated through a study of the effect of radiation exposure on the risk of cancer. An R package, evidenceFactors, is available from CRAN to implement the methods of the paper.

Funder

Radiation Effects Research Foundation

Japanese Ministry of Health, Labour and Welfare

Department of Energy

National Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference34 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3