Regression-adjusted average treatment effect estimates in stratified randomized experiments

Author:

Liu Hanzhong1,Yang Yuehan2

Affiliation:

1. Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing 100084, China

2. School of Statistics and Mathematics, Central University of Finance and Economics, South Road, Beijing 100081, China

Abstract

Summary Linear regression is often used in the analysis of randomized experiments to improve treatment effect estimation by adjusting for imbalances of covariates in the treatment and control groups. This article proposes a randomization-based inference framework for regression adjustment in stratified randomized experiments. We re-establish, under mild conditions, the finite-population central limit theorem for a stratified experiment, and we prove that both the stratified difference-in-means estimator and the regression-adjusted average treatment effect estimator are consistent and asymptotically normal; the asymptotic variance of the latter is no greater and typically less than that of the former. We also provide conservative variance estimators that can be used to construct large-sample confidence intervals for the average treatment effect.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous),General Mathematics,Statistics and Probability

Reference27 articles.

1. Estimation of the conditional variance in paired experiments;Abadie,;Ann. Econ. Statist.,2008

2. Asymptotic normality and the bootstrap in stratified sampling;Bickel,;Ann. Statist.,1984

3. Lasso adjustments of treatment effect estimates in randomized experiments;Bloniarz,;Proc. Nat. Acad. Sci.,2016

4. Iron deficiency and schooling attainment in Peru;Chong,;Am. Econ. J. Appl. Econ,2016

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3