Fully adaptive Bayesian algorithm for data analysis: FABADA

Author:

Sánchez-Alarcón Pablo M12ORCID,Ascasibar Yago3

Affiliation:

1. Instituto de Astrofísica de Canarias , c/ Vía Láctea s/n E-38205, La Laguna, Tenerife, Spain

2. Departamento de Astrofísica, Universidad de La Laguna , E-38206, La Laguna, Tenerife, Spain

3. Departamento de Física Teórica, Universidad Autónoma de Madrid , E-28049 Madrid, Spain

Abstract

Abstract The discovery potential from astronomical and other data is limited by their noise. We introduce a novel non-parametric noise reduction technique based on Bayesian inference techniques, fully adaptive Bayesian algorithm for data analysis (FABADA) that automatically improves the signal-to-noise ratio of one- and two-dimensional data, such as astronomical images and spectra. The algorithm iteratively evaluates possible smoothed versions of the data, the smooth models, estimating the underlying signal that is statistically compatible with the noisy measurements. Iterations stop based on the evidence and the χ2 statistic of the last smooth model. We then compute the expected value of the signal as a weighted average of the whole set of smooth models. We explain the mathematical formalism and numerical implementation of the algorithm, and evaluate its performance in terms of the peak signal-to-noise ratio, the structural similarity index, and the time payload, using a battery of real astronomical observations. Our FABADA yields results that, without any parameter tuning, are comparable with standard image processing algorithms whose parameters have been optimized based on the true signal to be recovered, something that is impossible in a real application. On the other hand, state-of-the-art non-parametric methods, such as block-matching and three-dimensional filtering, offer slightly better performance at high signal-to-noise ratio, while our algorithm is significantly more accurate for extremely noisy data, a situation usually encountered in astronomy.

Funder

Spanish State Research Agency

Spanish Ministry of Science and Innovation

ACIISI

ERDF

IAC

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine-learning enhanced photometric analysis of the extremely bright GRB 210822A;Monthly Notices of the Royal Astronomical Society;2023-11-23

2. The AMIGA sample of isolated galaxies;Astronomy & Astrophysics;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3