Using Airborne LiDAR to Monitor Spatial Patterns in South Central Oregon Dry Mixed-Conifer Forest

Author:

Olszewski Julia12ORCID,Bienz Craig3ORCID,Markus Amy4

Affiliation:

1. Lake County Resources Initiative , Lakeview, OR, 97630 , USA

2. Pyrologix Current Affiliation: , Missoula, MT, 59802 , USA

3. The Nature Conservancy, Sycan Marsh Preserve , Klamath Falls, OR, 97601 , USA

4. USDA Forest Service, Fremont-Winema National Forest , Lakeview, OR, 97630 , USA

Abstract

Abstract A common forest restoration goal is to achieve a spatial distribution of trees consistent with historical forest structure, which can be characterized by the distribution of individuals, clumps, and openings (ICO). With the stated goal of restoring historical spatial patterns comes a need for effectiveness monitoring at appropriate spatial scales. Airborne light detection and ranging (LiDAR) can be used to identify individual tree locations and collect data at landscape scales, offering a method of analyzing tree spatial distributions over the scales at which forest restoration is conducted. In this study, we investigated whether tree locations identified by airborne LiDAR data can be used with existing spatial analysis methods to quantify ICO distributions for use in restoration effectiveness monitoring. Results showed fewer large clumps and large openings, and more small clumps and small openings relative to historical spatial patterns, suggesting that the methods investigated in this study can be used to monitor whether restoration efforts are successful at achieving desired tree spatial patterns. Study Implications: Achieving a desired spatial pattern is often a goal of forest restoration. Monitoring for spatial pattern, however, can be complex and time-consuming in the field. LiDAR technology offers the ability to analyze spatial pattern at landscape scales. Preexisting methods for evaluation of the distribution of individuals, clumps, and openings were used in this study along with LiDAR individual tree detection methodology to assess whether a forest restoration project implemented in a Southern Oregon landscape achieved desired spatial patterns.

Funder

USDA Forest Service

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3