Do Experimental Forests and Ranges of the Southeastern United States Represent the Climate, Ecosystem Structure, and Ecosystem Functions of the Region?

Author:

Xiao Jingfeng1ORCID,Sun Ge2,Potter Kevin M2ORCID,Boggs Johnny2,Zhang Qingyuan3,McNulty Steven G2

Affiliation:

1. Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire , Durham, NH, 03824 , USA

2. Eastern Forest Environmental Threat Assessment Center, Southern Research Station, USDA Forest Service , Research Triangle Park, NC, 27709 , USA

3. Cooperative Institute for Satellite Earth System Studies, Earth System Science Interdisciplinary Center, University of Maryland , College Park, MD, 20740 , USA

Abstract

Abstract There are twenty experimental forest and range sites (EFRs) across the southeastern United States that are currently maintained by the USDA Forest Service (Forest Service) to conduct forest ecosystem research for addressing ecosystem management challenges. The overall objective of this study was to use multiple gridded datasets to assess the extent to which the twenty EFRs represent the climate, ecosystem structure, and ecosystem functions of southeastern forests. The EFRs represent the large variability of climate conditions across the region relatively well, but we identified small representation gaps. The representativeness of ecosystem structure by these EFRs can be improved by establishing EFRs in forests with relatively low tree cover, leaf area index, or tree canopy height. The current EFRs also represent the forest ecosystem functions of the region relatively well, although areas with intermediate and low aboveground biomass and water yield are not well represented. The trends in climate, ecosystem structure, and ecosystem functions were generally consistent between the region and the EFRs. Our study indicates that the current EFRs represent the region relatively well, but establishing additional EFRs in specific areas within the region could help more completely assess how southeastern forests respond to climate change, disturbance, and management practices. Study Implications This study across the experimental forests and ranges (EFRs) and the southeastern forest region fills the knowledge gap regarding climate, ecosystem structure, and ecosystem functions of EFRs in the context of the broader southeastern forest region. Understanding ecosystem functions and structures across the EFR network can help the Southern Research Station to address new research questions. Our study indicates that the current EFRs represent the climate, ecosystem structure, and ecosystem functions of southeastern forests well. However, establishing additional EFRs in certain regions could help more completely assess how southeastern forests respond to climate change, disturbance, and management practices.

Funder

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3