Avoidance of phenylthiocarbamide in mature Targhee and Rambouillet rams

Author:

Henslee Dillan1,Yelich Joel2,Taylor J Bret3ORCID,Ellison Melinda1

Affiliation:

1. Department of Animal and Veterinary Science, University of Idaho, Moscow, ID

2. Department of Animal and Veterinary Science, Idaho Agricultural Experiment Station, Nancy M. Cummings Research, Extension and Education Center, University of Idaho, Carmen, ID

3. U.S. Sheep Experiment Station, Agricultural Research Service, USDA, Dubois, ID

Abstract

Abstract Shrub encroachment on grasslands is a worldwide issue and sheep are a potential tool for mitigating shrub encroachment. Many shrubs, however, contain bitter-tasting compounds that may deter grazers. Cattle and sheep commonly graze rangelands, but of the two, sheep have a greater tolerance for bitter compounds and would be expected to consume more bitter-tasting vegetation. We hypothesized that sheep could detect (i.e., taste) bitter-tasting compounds and the sensitivity to these compounds would vary from animal to animal. The objective of this study was to determine whether sheep could detect the bitter-tasting compound phenylthiocarbamide (PTC), and if so, what PTC concentration would elicit an avoidance response. Using a crossover study design, mature Rambouillet and Targhee rams (n = 30) were subjected in randomized order to various PTC concentrations mixed in the drinking water (PTC solution). In trials 1 and 2 (n = 15/trial), 0.20, 0.56, 1.57, 4.39, and 12.29 mM and 0.20, 0.43, 0.94, 2.03, and 4.39 mM of PTC were tested, respectively. On test days, PTC solution (trial 1: 1.5 kg; trial 2: 3.0 kg) and water (same amounts) were offered for ad libitum intake in a side-by-side presentation for 1 h in trial 1 and 2 h in trial 2. Each test day was followed by a rest day where PTC solution was replaced with water to limit potential carry over effects into the next test day. Consumption of PTC solution for each PTC concentration was expressed as the percentage of PTC solution intake of total morning fluid intake. There was no effect (P > 0.74) of sequence that rams received PTC solutions on PTC consumption during either trial. As PTC concentration increased, percentage of PTC solution intake decreased (P ≤ 0.01) for both trials. The greatest decrease in percentage of PTC solution intake occurred between 1.57 and 4.39 mM (58%) for trial 1 and 2.03 and 4.39 mM (72%) for trial 2. In trial 2, the least percentage of PTC solution intake was the 4.39 mM PTC concentration, which was different (P ≤ 0.05) from lesser PTC concentrations. All other PTC concentrations did not differ (P > 0.05) from each other in percentage intake. This research suggests rams could taste the PTC, and the concentration at which PTC solution was avoided varied across rams. It may be possible to select sheep, based on demonstrated avoidance of PTC, for targeted grazing applications to manipulate vegetation toward range management goals.

Funder

USDA-ARS-Sheep Experiment Station

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3