The role of heterogeneous stress in earthquake cycle models of the Hikurangi–Kermadec subduction zone

Author:

Liao Yi-Wun Mika12ORCID,Fry Bill1,Howell Andrew12,Williams Charles A1,Nicol Andrew2,Rollins Chris1

Affiliation:

1. GNS Science , 1 Fairway Drive, Avalon, Lower Hutt 5010 , New Zealand

2. School of Earth and Environment, University of Canterbury , 20 Kirkwood Avenue, Upper Riccarton, Christchurch 8041 , New Zealand

Abstract

SUMMARY Seismic and tsunami hazard modelling and preparedness are challenged by uncertainties in the earthquake source process. Important parameters such as the recurrence interval of earthquakes of a given magnitude at a particular location, the probability of multifault rupture, earthquake clustering, rupture directivity and slip distribution are often poorly constrained. Physics-based earthquake simulators, such as RSQSim, offer a means of probing uncertainties in these parameters by generating long-term catalogues of earthquake ruptures on a system of known faults. The fault initial stress state in these simulations is typically prescribed as a single uniform value, which can promote characteristic earthquake behaviours and reduce variability in modelled events. Here, we test the role of spatial heterogeneity in the distribution of the initial stresses and frictional properties on earthquake cycle simulations. We focus on the Hikurangi–Kermadec subduction zone, which may produce Mw > 9.0 earthquakes and likely poses a major hazard and risk to Aotearoa New Zealand. We explore RSQSim simulations of Hikurangi-Kermadec subduction earthquake cycles in which we vary the rate and state coefficients (a and b). The results are compared with the magnitude-frequency distribution (MFD) of the instrumental earthquake catalogue and with empirical slip scaling laws from global earthquakes. Our results suggest stress heterogeneity produces more realistic and less characteristic synthetic catalogues, making them particularly well suited for hazard and risk assessment. We further find that the initial stress effects are dominated by the initial effective normal stresses, since the normal stresses evolve more slowly than the shear stresses. A heterogeneous stress model with a constant pore-fluid pressure ratio and a constant state coefficient (b) of 0.003 produces the best fit to MFDs and empirical scaling laws, while the model with variable frictional properties produces the best fit to earthquake depth distribution and empirical scaling laws. This model is our preferred initial stress state and frictional property settings for earthquake modelling of the Hikurangi–Kermadec subduction interface. Introducing heterogeneity of other parameters within RSQSim (e.g. friction coefficient, reference slip rate, characteristic distance, initial state variable, etc.) could further improve the applicability of the synthetic earthquake catalogues to seismic hazard problems and form the focus of future research.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3