Subsurface stress assessment from cross-coupled borehole acoustic eigenmodes

Author:

Jørgensen Ole1,Burns Dan2

Affiliation:

1. Geological Survey of Denmark and Greenland (GEUS) , Øster Voldgade 10, 1350 Copenhagen K , Denmark

2. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology , MA 202139 Cambridg , USA

Abstract

SUMMARY We present an approach, based on cross-coupling of quadrupole and monopole borehole acoustic modes caused by anisotropy, to investigate the in situ stress state, a critical parameter for effective CO2 sequestration and for determining subsurface injection bounds in general. We focus on in situ stress states where the vertical direction is a principal stress direction, and we aim at determining the minimum and maximum horizontal stresses. Because of non-linear elastic effects, three unequal principal stresses in an otherwise isotropic rock may create three orthogonal planes of symmetry, which characterize an orthorhombic elastic medium. Near a wellbore, where the stress field is perturbed, a stress sensitive material causes material axes and moduli to form a spatial distribution to which sonic logging is sensitive. We present a method for differentiating between stress induced and intrinsic anisotropy. Using finite element modelling, we demonstrate that in either case the quadrupole fundamental mode includes an axis-symmetric (monopole) component. We demonstrate that the acoustic amplitude at the borehole centre divided by the maximum acoustic amplitude at the wellbore periphery (dominated by the acoustic profile $\cos(2\theta )$) is an indicator of elastic anisotropy. We denote this ratio $I_A$ and argue that $I_A\gt 0$ when the elastic anisotropy is of entirely intrinsic origin (meaning the elastic moduli are in-sensitive to stress), and further that $I_A$ increases for decreasing frequency for such cases. We demonstrate that $I_A$ attains negative values for increasing frequency in stress-sensitive formations where a cross-over (from negative to positive values) is attributed to the perturbed velocity/moduli/stress fields near the wellbore. In synthetic data, we show that the ratio $I_A$, in combination with the phase velocity dispersion, uniquely determines the state of stress in stress-sensitive formations. In stress in-sensitive formations, we argue that $I_A$ at lower frequencies, that is at frequencies slightly above the cut-off frequency, is very sensitive to elastic anisotropy. We argue that in quadrupole eigenmodes, evidence of intrinsic anisotropy is present at low frequencies whereas stress induced anisotropy is better gauged at moderate to high frequencies. Finally, we discuss the practical implications of these findings.

Funder

Geological Survey of Denmark and Greenland

Publisher

Oxford University Press (OUP)

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3