Affiliation:
1. Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
2. Department of Immunology, Yale School of Medicine, New Haven, CT, USA
3. Department of Pathology, Yale School of Medicine, New Haven, CT, USA
Abstract
Summary
Though basophils were originally viewed as redundant blood ‘mast cells’, the implementation of flow cytometry has established basophils as unique leukocytes with critical immunomodulatory functions. Basophils play an active role in allergic inflammation, autoimmunity, and hematological malignancies. They are distinguishable from other leukocytes by their characteristic metachromatic deep-purple cytoplasmic, round granules. Mature basophils are phenotypically characterized by surface expression of IL-3Rα (CD123); IL-3 drives basophil differentiation, degranulation, and synthesis of inflammatory mediators including type 2 cytokines. Basophil degranulation is the predominant source of histamine in peripheral blood, promoting allergic responses. Basophils serve as a bridge between innate and adaptive immunity by secreting IL-4 which supports eosinophil migration, monocyte differentiation into macrophages, B-cell activation, and CD4 T-cell differentiation into Th2 cells. Further, basophilia is a key phenomenon in myeloid neoplasms, especially chronic myeloid leukemia (CML) for which it is a diagnostic criterion. Increased circulating basophils, often with aberrant immunophenotype, have been detected in patients with CML and other myeloproliferative neoplasms (MPNs). The significance of basophils’ immunoregulatory functions in malignant and non-malignant diseases is an active area of research. Ongoing and future research can inform the development of immunotherapies that target basophils to impact allergic, autoimmune, and malignant disease states. This review article aims to provide an overview of basophil biology, identification strategies, and roles and dysregulation in diseases.
Publisher
Oxford University Press (OUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献