Gene expression profiling of the bone trabecula in patients with osteonecrosis of the femoral head by RNA sequencing

Author:

Bai Haobo12,Chen Tingmei2,Lu Qian3,Zhu Weiwen12,Zhang Jian1

Affiliation:

1. Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, 1 Yi Xue Yuan Road, Yu Zhong District, Chongqing 400016, China

2. Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, 1 Road Yixueyuan, Yuzhong District, Chongqing 400016, China

3. Heart Centre, the Children’s Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yu Zhong District, Chongqing 400016, China

Abstract

Abstract Early diagnosis and treatment of osteonecrosis of the femoral head (ONFH) is challenging. Bone trabecula play a vital role in the severity and progression of ONFH. In the present study, the investigators used gene expression profiling of bone trabecula to investigate gene alterations in ONFH patients. Osteonecrotic bone trabecula (ONBT) such as necrosis, fibrosis, and lacuna were confirmed by histological examination in the patients. The adjacent ‘normal’ bone trabecula (ANBT) did not show any pathological changes. Gene sequencing data revealed that although ANBT showed no significant histological changes, alteration of mRNA profiling in ANBT was observed, similar to that in ONBT. Our results indicated that the alteration of mRNA profiling in ANBT may cause normal bone tissue to develop into necrotic bone. RNA-seq data indicated that 2,297 differentially abundant mRNAs were found in the ONBT group (1,032 upregulated and 1,265 downregulated) and 1,523 differentially abundant mRNAs in the ANBT group (744 upregulated and 799 downregulated) compared with the healthy control group. Gene ontology (GO) enrichment analysis suggested that fatty acid metabolism and degradation were the main zones enriched with differentially expressed genes (DEG). Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis indicated that peroxisome proliferator-activated receptor γ (PPAR-γ) pathway was the most significantly regulated pathway. Lipocalin-2 (LCN2), an osteoblast-enriched secreted protein, was significantly decreased in ONBT suggesting that downregulation of LCN2 might affect lipid metabolism and lead to hyperlipidemia, and thus promote pathogenesis of ONFH.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3