PHF20 is crucial for epigenetic control of starvation-induced autophagy through enhancer activation

Author:

Park Se Won1ORCID,Kim Jaehoon2,Oh Sungryong1,Lee Jeongyoon1,Cha Joowon1,Lee Hyun Sik1,Kim Keun Il3,Park Daechan24,Baek Sung Hee1ORCID

Affiliation:

1. Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University , Seoul 08826, South Korea

2. Department of Molecular Science and Technology, Ajou University , Suwon  16499,  South Korea

3. Department of Biological Sciences, Sookmyung Women's University , Seoul  04310,  South Korea

4. Department of Biological Sciences, Ajou University ,  Suwon  16499,  South Korea

Abstract

Abstract Autophagy is a catabolic pathway that maintains cellular homeostasis under various stress conditions, including conditions of nutrient deprivation. To elevate autophagic flux to a sufficient level under stress conditions, transcriptional activation of autophagy genes occurs to replenish autophagy components. Thus, the transcriptional and epigenetic control of the genes regulating autophagy is essential for cellular homeostasis. Here, we applied integrated transcriptomic and epigenomic profiling to reveal the roles of plant homeodomain finger protein 20 (PHF20), which is an epigenetic reader possessing methyl binding activity, in controlling the expression of autophagy genes. Phf20 deficiency led to impaired autophagic flux and autophagy gene expression under glucose starvation. Interestingly, the genome-wide characterization of chromatin states by Assay for Transposase-Accessible Chromatin (ATAC)-sequencing revealed that the PHF20-dependent chromatin remodelling occurs in enhancers that are co-occupied by dimethylated lysine 36 on histone H3 (H3K36me2). Importantly, the recognition of H3K36me2 by PHF20 was found to be highly correlated with increased levels of H3K4me1/2 at the enhancer regions. Collectively, these results indicate that PHF20 regulates autophagy genes through enhancer activation via H3K36me2 recognition as an epigenetic reader. Our findings emphasize the importance of nuclear events in the regulation of autophagy.

Funder

Creative Research Initiatives Program

Science Research Center program

Basic Science Research Program

Bio & Medical Technology Development Program

Ministry of Education

Science Research Center Program

Korea government

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3