Empagliflozin inhibits excessive autophagy through the AMPK/GSK3β signalling pathway in diabetic cardiomyopathy

Author:

Madonna Rosalinda1,Moscato Stefania2,Cufaro Maria Concetta34,Pieragostino Damiana45,Mattii Letizia2,Del Boccio Piero34,Ghelardoni Sandra6,Zucchi Riccardo6,De Caterina Raffaele1ORCID

Affiliation:

1. Cardiology Division, Department of Pathology, University of Pisa , Via Paradisa, 56124 Pisa , Italy

2. Histology Division, Department of Clinical and Experimental Medicine, University of Pisa , Via Savi 10, 56126 Pisa , Italy

3. Department of Pharmacy, ‘G. d’Annunzio’ University of Chieti-Pescara , Via Colle dell'Ara, 56100 Chieti , Italy

4. Analytical Biochemistry and Proteomics Laboratory, Center for Advanced Studies and Technology (CAST), ‘G. d’Annunzio’ University of Chieti-Pescara , Via Colle dell'Ara, 56100 Chieti , Italy

5. Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara , Via Colle dell'Ara, 56100 Chieti , Italy

6. Department of Pathology, Laboratory of Biochemistry, University of Pisa , Via Savi 10, 56126 Pisa , Italy

Abstract

Abstract Aims Sodium-glucose cotransporter 2 inhibitors have beneficial effects on heart failure and cardiovascular mortality in diabetic and non-diabetic patients, with unclear mechanisms. Autophagy is a cardioprotective mechanism under acute stress conditions, but excessive autophagy accelerates myocardial cell death leading to autosis. We evaluated the protective role of empagliflozin (EMPA) against cardiac injury in murine diabetic cardiomyopathy. Methods and results Male mice, rendered diabetics by one single intraperitoneal injection of streptozotocin and treated with EMPA (30 mg/kg/day), had fewer apoptotic cells (4.9 ± 2.1 vs. 1 ± 0.5 TUNEL-positive cells %, P < 0.05), less senescence (10.1 ± 2 vs. 7.9 ± 1.2 β-gal positivity/tissue area, P < 0.05), fibrosis (0.2 ± 0.05 vs. 0.15 ± 0.06, P < 0.05 fibrotic area/tissue area), autophagy (7.9 ± 0.05 vs. 2.3 ± 0.6 fluorescence intensity/total area, P < 0.01), and connexin (Cx)-43 lateralization compared with diabetic mice. Proteomic analysis showed a down-regulation of the 5′ adenosine monophosphate-activated protein kinase (AMPK) pathway and upstream activation of sirtuins in the heart of diabetic mice treated with EMPA compared with diabetic mice. Because sirtuin activation leads to the modulation of cardiomyogenic transcription factors, we analysed the DNA binding activity to serum response elements (SRE) of serum response factor (SRF) by electromobility shift assay. Compared with diabetic mice [0.5 ± 0.01 densitometric units (DU)], non-diabetic mice treated with EMPA (2.2 ± 0.01 DU, P < 0.01) and diabetic mice treated with EMPA (2.0 ± 0.1 DU, P < 0.01) significantly increased SRF binding activity to SRE, paralleled by increased cardiac actin expression (4.1 ± 0.1 vs. 2.2 ± 0.01 target protein/β-actin ratio, P < 0.01). EMPA significantly reversed cardiac dysfunction on echocardiography in diabetic mice and inhibited excessive autophagy in high-glucose-treated cardiomyocytes by inhibiting the autophagy inducer glycogen synthase kinase 3 beta (GSK3β), leading to reactivation of cardiomyogenic transcription factors. Conclusion Taken together, our results describe a novel paradigm in which EMPA inhibits hyperactivation of autophagy through the AMPK/GSK3β signalling pathway in the context of diabetes.

Funder

Ministero dell’Istruzione, Università e Ricerca Scientifica to De Caterina and Madonna

Mattii and Moscato

Del Boccio

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3