Protective effects of ulinastatin and methylprednisolone against radiation-induced lung injury in mice

Author:

Sun Yu,Du Yu-Jun,Zhao Hui,Zhang Guo-Xing,Sun Ni,Li Xiu-Jiang

Abstract

Abstract The effectiveness of ulinastatin and methylprednisolone in treating pathological changes in mice with radiation-induced lung injury (RILI) was evaluated. Forty C57BL/6 female mice received whole-chest radiation (1.5 Gy/min for 12 min) and were randomly allocated into Group R (single radiation, n =  10), Group U (ulinastatin treatment, n =  10), Group M (methylprednisolone treatment, n =  10), or Group UM (ulinastatin and methylprednisolone treatment, n =  10). Another 10 untreated mice served as controls (Group C). Pathological changes in lung tissue, pulmonary interstitial area density (PIAD) and expression levels of transforming growth factor β1 (TGF-β1) and tumor necrosis factor α (TNF-α) in lung tissue, serum and bronchoalveolar lavage fluid were determined. Alleviation of pathological changes in lung tissue was observed in Groups U, M and UM. Treatment with ulinastatin, methylprednisolone or both effectively delayed the development of fibrosis at 12 weeks after radiation. Ulinastatin, methylprednisolone or both could alleviate the radiation-induced increase in the PIAD ( P  < 0.05 or P  < 0.01). Treatment with ulinastatin, methylprednisolone or both significantly reduced the expression of TNF-α, but not TGF-β1, at 9 weeks after radiation compared with Group R ( P  < 0.01). Ulinastatin and / or methylprednisolone effectively decreased the level of TNF-α in lung tissue after RILI and inhibited both the inflammatory response and the development of fibrosis.

Funder

Science and Technology Bureau of Changchun

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology Nuclear Medicine and imaging,Radiation

Reference28 articles.

1. Radioprotective effect of melatonin on radiation-induced lung injury and lipid peroxidation in rats;Tahamtan;Cell J,2015

2. Model development and use of ACE inhibitors for preclinical mitigation of radiation-induced injury to multiple organs;Medhora;Radiat Res,2014

3. Preventive and therapeutic effects of quercetin on experimental radiation induced lung injury in mice;Wang;Asian Pac J Cancer Prev,2015

4. Target cells in radiation pneumopathy;Trott;Int J Radiat Oncol Biol Phys,2004

5. Anatomical, functional and metabolic imaging of radiation-induced lung injury using hyperpolarized MRI;Santyr;NMR Biomed,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3