Reassortments in single-stranded DNA multipartite viruses: Confronting expectations based on molecular constraints with field observations

Author:

Torralba Babil1ORCID,Blanc Stéphane1ORCID,Michalakis Yannis2ORCID

Affiliation:

1. PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro , Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France

2. MIVEGEC, Université Montpellier, CNRS, IRD , 911, Avenue Agropolis, Montpellier 34394, France

Abstract

Abstract Single-stranded DNA multipartite viruses, which mostly consist of members of the genus Begomovirus, family Geminiviridae, and all members of the family Nanoviridae, partly resolve the cost of genomic integrity maintenance through two remarkable capacities. They are able to systemically infect a host even when their genomic segments are not together in the same host cell, and these segments can be separately transmitted by insect vectors from host to host. These capacities potentially allow such viruses to reassort at a much larger spatial scale, since reassortants could arise from parental genotypes that do not co-infect the same cell or even the same host. To assess the limitations affecting reassortment and their implications in genome integrity maintenance, the objective of this review is to identify putative molecular constraints influencing reassorted segments throughout the infection cycle and to confront expectations based on these constraints with empirical observations. Trans-replication of the reassorted segments emerges as the major constraint, while encapsidation, viral movement, and transmission compatibilities appear more permissive. Confronting the available molecular data and the resulting predictions on reassortments to field population surveys reveals notable discrepancies, particularly a surprising rarity of interspecific natural reassortments within the Nanoviridae family. These apparent discrepancies unveil important knowledge gaps in the biology of ssDNA multipartite viruses and call for further investigation on the role of reassortment in their biology.

Funder

ANR Nanovirus

ANR Reassort

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3