Beyond the L-Strut: Redefining the Biomechanics of Rhinoplasty Using Topographic Optimization Modeling

Author:

Glass Graeme Ewan12,Staruch Robert M T3,Ruston Julia3,East Charles A45,Tan P J6

Affiliation:

1. Department of Surgery, Sidra Medicine, Doha, State of Qatar

2. Associate Professor of Plastic Surgery, Weill Cornell Medical College, Qatar

3. Pan-Thames Plastic Surgical Residency Program, London, UK

4. Department of ENT/Facial Plastic Surgery, University College Hospitals London NHS Trust (Royal National Throat, Nose, and Ear Hospital), London, UK

5. University College London (UCL), London, UK

6. Associate Professor of Applied Mechanics, Department of Mechanical Engineering, University College London (UCL), London, UK

Abstract

AbstractRhinoplasty utilizes cartilage harvested from the nasal septum as autologous graft material. Traditional dogma espouses preservation of the “L-strut” of dorsal and caudal septum, which is less resistant to axial loading than virgin septum. Considering the 90° angle between dorsal and caudal limbs, the traditional L-strut also suffers from localized increases in internal stresses leading to premature septal “cracking,” structural-scale deformation, or both. Deformation and failure of the L-strut leads to nasal deviation, saddle deformity, loss of tip support, or restriction of the nasal valve. The balance between cartilage yield and structural integrity is a topographical optimization problem. Guided by finite element (FE) modelling, recent efforts have yielded important modifications including the chamfering of right-angled corners to reduce stress concentrations and the preservation of a minimum width along the inferior portion of the caudal strut. However, all existing FE studies offer simplified assumptions to make the construct easier to model. This review article highlights advances in our understanding of septal engineering and identifies areas that require more work to further refine the balance between the competing interests of graft acquisition and the maintenance of nasal structural integrity.

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Surgery

Reference48 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3