Determination of Zearalenone in Barley, Maize and Wheat Flour, Polenta, and Maize-Based Baby Food by Immunoaffinity Column Cleanup with Liquid Chromatography: Interlaboratory Study

Author:

MacDonald Susan J1,Anderson Sharron1,Brereton Paul1,Wood Roger2,Damant Andrew2,Aletrari M,Alonso S,Burdaspal P,Darroch J,Donnelly C,Durand T,Felguerias I,French R,Griffin J,Heide C,Herry M,Hollywood F,Howe A,Ioannou-Kakouri E,Johnson T,Kernaghan I,Krska R,Nisbet J,Pettersson H,Procter J,Rawcliffe P,Smith A,Smith W,Stangroom S,Stevens C,Swanson W,Sweet P,Thomas M,Waller J,Welsh P,

Affiliation:

1. Central Science Laboratory, Sand Hutton, York, YO41 1LZ, United Kingdom

2. Food Standards Agency, Aviation House, 125 Kingsway, London, WC2B 6NH, United Kingdom

Abstract

Abstract An interlaboratory study was performed on behalf of the UK Food Standards Agency to evaluate the effectiveness of an affinity column cleanup liquid chromatography (LC) method for the determination of zearalenone (ZON) in a variety of cereals and cereal products at proposed European regulatory limits. The test portion is extracted with acetonitrile:water. The sample extract is filtered, diluted, and applied to an affinity column. The column is washed, and ZON is eluted with acetonitrile. ZON is quantified by reversed-phase LC with fluorescence detection. Barley, wheat and maize flours, polenta, and a maize-based baby food naturally contaminated, spiked, and blank (very low level) were sent to 28 collaborators in 9 European countries and 1 collaborator in New Zealand. Participants were asked to spike test portions of all samples at a ZON concentration equivalent to 100 μg/kg. Average recoveries ranged from 91–111%. Based on results for 4 artificially contaminated samples (blind duplicates) and 1 naturally contaminated sample (blind duplicate), the relative standard deviation for repeatability (RSDr) ranged from 6.9–35.8%, and the relative standard deviation for reproducibility (RSDR) ranged from 16.4–38.2%. The method showed acceptable within- and between-laboratory precision for all 5 matrixes, as evidenced by HorRat values <1.7.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3