MALDI-TOF MS protein fingerprinting of mixed samples

Author:

Reeve Michael A1,Bachmann Denise1

Affiliation:

1. Department of Bioscience, CABI Bioscience, Bakeham Lane, Egham, Surrey TW20 9TY, UK

Abstract

Abstract Analytical techniques currently available for the characterization of mixtures of microorganisms are generally based on next-generation sequencing. Motivated to develop practical and less-expensive methods for characterizing such mixtures, we propose, as an alternative or complement, the use of matrix-assisted laser-desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS), which is capable of high-resolution discrimination between species and even between biotypes within species. Potential approaches employing this technique for such characterization are discussed along with impediments to their successful employment. As a consequence, our rationale has been to capitalize on the powerful algorithms currently available for spectral comparison. Following this rationale, the first priority is to ensure the generation of MALDI-TOF MS spectra from mixtures of microorganisms that contain manageable peak complexities and that can be handled by the existing spectral comparison algorithms, preferably with the option to archive and re-run sample preparations and to pipette replicates of these onto MALDI-TOF MS sample plates. The second priority is to ensure that database entry is comparably facile to sample preparation so that large databases of known microorganism mixture MALDI-TOF MS spectra could be readily prepared for comparison with the spectra of unknown mixtures. In this article, we address the above priorities and generate illustrative MALDI-TOF MS spectra to demonstrate the utility of this approach. In addition, we investigate methods aimed at chemically modulating the peak complexity of the obtained MALDI-TOF MS spectra.

Funder

Crop Health and Protection Limited

Publisher

Oxford University Press (OUP)

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3