The Customizable E-cigarette Resistance Influences Toxicological Outcomes: Lung Degeneration, Inflammation, and Oxidative Stress-Induced in a Rat Model

Author:

Cirillo Silvia1,Vivarelli Fabio1,Turrini Eleonora2,Fimognari Carmela2,Burattini Sabrina3,Falcieri Elisabetta3,Rocchi Marco Bruno Luigi3,Cardenia Vladimiro4,Rodriguez-Estrada Maria Teresa56,Paolini Moreno1,Canistro Donatella1

Affiliation:

1. Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, 40126 Bologna

2. Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, 47921 Rimini

3. Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino

4. Department of Agricultural, Forest and Food Sciences, University of Turin

5. Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna

6. Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum—University of Bologna, 47521 Cesena, Italy

Abstract

AbstractDespite the knowledge gap regarding the risk-benefit ratio of the electronic cigarette (e-cig), its use has grown exponentially, even in teenagers. E-cig vapor contains carcinogenic compounds (eg, formaldehyde, acetaldehyde, and acrolein) and free radicals, especially reactive oxygen species (ROS) that cause toxicological effects, including DNA damage. The role of e-cig voltage customization on molecule generation has been reported, but the effects of the resistance on e-cig emissions and toxicity are unknown. Here, we show that the manipulation of e-cig resistance influences the carbonyls production from nonnicotine vapor and the oxidative and inflammatory status in a rat model. Fixing the voltage at the conventional 3.5 V, we observed that the amount of the selected aldehydes increased as the resistance decreased from 1.5 to 0.25 Ω. Under these conditions, we exposed Sprague Dawley rats to e-cig aerosol for 28 days, and we studied the pulmonary inflammation, oxidative stress, tissue damage, and blood homeostasis. We found a perturbation of the antioxidant and phase II enzymes, probably related to the increased ROS levels due to the enhanced xanthine oxidase and P450-linked monooxygenases. Furthermore, frames from scanning electron microscope showed a disorganization of alveolar and bronchial epithelium in 0.25 Ω group. Overall, various toxicological outcomes, widely recognized as smoke-related injuries, can potentially occur in e-cig consumers who use low-voltage and resistance device. Our study suggests that certain “tips for vaping safety” cannot be established, and encourages further independent investigations to help public health agencies in regulating the e-cig use.

Funder

Italian Ministry of Education

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3