Bbc3 Loss Enhances Survival and Protein Clearance in Neurons Exposed to the Organophosphate Pesticide Chlorpyrifos

Author:

Anderson Faith L1ORCID,von Herrmann Katharine M1,Young Alison L1,Havrda Matthew C1

Affiliation:

1. Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03766, USA

Abstract

Abstract Exposure to environmental toxicants can increase the risk of developing age-related neurodegenerative disorders. Exposure to the widely used organophosphate pesticide chlorpyrifos (CPF) is associated with increased risk of developing Alzheimer’s disease and Parkinson’s disease, but the cellular mechanisms underlying CPF toxicity in neurons are not completely understood. We evaluated CPF toxicity in mouse primary cortical neuronal cultures, using RNA-sequencing to identify cellular pathways modulated by CPF. CPF exposure altered the expression of genes associated with intrinsic apoptosis, significantly elevating expression of the pro-apoptotic mediator Bbc3/Puma. Bbc3 loss attenuated CPF driven neurotoxicity, induction of other intrinsic apoptosis regulatory genes including Trp53 and Pmaip1 (encoding the NOXA protein), and cleavage of apoptosis executors caspase 3 and poly (ADP-ribose) polymerase (PARP). CPF exposure was associated with enhanced expression of endoplasmic reticulum stress-related genes and proteins and the accumulation of high molecular weight protein species in primary neuronal cultures. No evidence of alterations in the ubiquitin-proteosome system were observed, however, autophagy-related proteins were upregulated in CPF-treated Bbc3−/− neuronal cultures compared with identically exposed WT cultures. Elevated autophagy-related protein expression in Bbc3−/− neuronal cultures was associated with a reduction in CPF-induced high molecular weight alpha-synuclein and tau immunoreactive protein aggregates. Studies indicate that Bbc3−/− neuronal cultures enhance the endoplasmic reticulum stress response and upregulate protein clearance mechanisms as a component of resistance to CPF-mediated toxicity.

Funder

NCI Cancer Center

The National Institute of Environmental and Health Sciences

NIH

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3