In Vitro Bioavailability of the Hydrocarbon Fractions of Dimethyl Sulfoxide Extracts of Petroleum Substances

Author:

Luo Yu-Syuan1,Ferguson Kyle C1,Rusyn Ivan1,Chiu Weihsueh A1ORCID

Affiliation:

1. Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station

Abstract

Abstract Determining the in vitro bioavailable concentration is a critical, yet unmet need to refine in vitro-to-in vivo extrapolation for unknown or variable composition, complex reaction product or biological material (UVCB) substances. UVCBs such as petroleum substances are commonly subjected to dimethyl sulfoxide (DMSO) extraction in order to retrieve the bioactive polycyclic aromatic compound (PAC) portion for in vitro testing. In addition to DMSO extraction, protein binding in cell culture media and dilution can all influence in vitro bioavailable concentrations of aliphatic and aromatic compounds in petroleum substances. However, these in vitro factors have not been fully characterized. In this study, we aimed to fill in these data gaps by characterizing the effects of these processes using both a defined mixture of analytical standards containing aliphatic and aromatic hydrocarbons, as well as 4 refined petroleum products as prototypical examples of UVCBs. Each substance was extracted with DMSO, and the protein binding in cell culture media was measured by using solid-phase microextraction. Semiquantitative analysis for aliphatic and aromatic compounds was achieved via gas chromatography-mass spectrometry. Our results showed that DMSO selectively extracted PACs from test substances, and that chemical profiles of PACs across molecular classes remained consistent after extraction. With respect to protein binding, chemical profiles were retained at a lower dilution (higher concentration), but a greater dilution factor (ie, lower concentration) resulted in higher protein binding in cell medium, which in turn altered the ultimate chemical profile of bioavailable PACs. Overall, this case study demonstrates that extraction procedures, protein binding in cell culture media, and dilution factors prior to in vitro testing can all contribute to determining the final bioavailable concentrations of bioactive constituents of UVCBs in vitro. Thus, in vitro-to-in vivo extrapolation for UVCBs may require greater attention to the concentration-dependent and compound-specific differences in recovery and bioavailability.

Funder

EPA

National Institutes of Health

National Academies of Sciences, Engineering, and Medicine’s Gulf Research Program

Army Advanced Civil Schooling Program

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3