Evaluating the impact of anatomical and physiological variability on human equivalent doses using PBPK models

Author:

Schacht Celia M1ORCID,Meade Annabel E2,Bernstein Amanda S13ORCID,Prasad Bidya4,Schlosser Paul M1ORCID,Tran Hien T5ORCID,Kapraun Dustin F1ORCID

Affiliation:

1. Center for Public Health and Environmental Assessment, Office of Research and Development , U.S. Environmental Protection Agency, Durham, North Carolina 27711, USA

2. Applied Research Associates, Inc. Raleigh , North Carolina 27615, USA

3. Oak Ridge Institute for Science and Education , Oak Ridge, Tennessee 37830, USA

4. NJ DEP , Trenton, New Jersey 08608, USA

5. Center for Research in Scientific Computation, NC State University , Raleigh, North Carolina 27607, USA

Abstract

Abstract Addressing human anatomical and physiological variability is a crucial component of human health risk assessment of chemicals. Experts have recommended probabilistic chemical risk assessment paradigms in which distributional adjustment factors are used to account for various sources of uncertainty and variability, including variability in the pharmacokinetic behavior of a given substance in different humans. In practice, convenient assumptions about the distribution forms of adjustment factors and human equivalent doses (HEDs) are often used. Parameters such as tissue volumes and blood flows are likewise often assumed to be lognormally or normally distributed without evaluating empirical data for consistency with these forms. In this work, we performed dosimetric extrapolations using physiologically based pharmacokinetic (PBPK) models for dichloromethane (DCM) and chloroform that incorporate uncertainty and variability to determine if the HEDs associated with such extrapolations are approximately lognormal and how they depend on the underlying distribution shapes chosen to represent model parameters. We accounted for uncertainty and variability in PBPK model parameters by randomly drawing their values from a variety of distribution types. We then performed reverse dosimetry to calculate HEDs based on animal points of departure for each set of sampled parameters. Corresponding samples of HEDs were tested to determine the impact of input parameter distributions on their central tendencies, extreme percentiles, and degree of conformance to lognormality. This work demonstrates that the measurable attributes of human variability should be considered more carefully and that generalized assumptions about parameter distribution shapes may lead to inaccurate estimates of extreme percentiles of HEDs.

Funder

Environmental Protection Agency

Oak Ridge Institute for Science and Education

Department of Energy

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3