Affiliation:
1. Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
2. Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
Abstract
Abstract
Recent epidemiological data indicate that the popularity of electronic cigarettes (e-cigarettes), and consequently nicotine use, is rising in both adolescent and adult populations. As nicotine is a known developmental neurotoxin, these products present a potential threat for those exposed during early life stages. Despite this, few studies have evaluated the toxicity of e-cigarettes on the developing central nervous system. The goal of this study was to assess neurotoxicity resulting from early-life exposure to electronic cigarette aerosols in an in vivo model. Specifically, studies here focused on neuro-parameters related to neuroinflammation and neurotrophins. To accomplish this, pregnant and neonatal C57BL/6 mice were exposed to aerosols produced from classic tobacco flavor e-cigarette cartridges (with [13 mg/ml] and without nicotine) during gestation (∼3 weeks) and lactation (∼3 weeks) via whole-body inhalation. Exposure to e-cigarette aerosols with and without nicotine caused significant reductions in hippocampal gene expression of Ngfr and Bdnf, as well as in serum levels of cytokines IL-1β, IL-2, and IL-6. Exposure to e-cigarette aerosols without nicotine enhanced expression of Iba-1, a specific marker of microglia, in the cornus ammonis 1 region of the hippocampus. Overall, our novel results indicate that exposure to e-cigarette aerosols, with and without nicotine, poses a considerable risk to the developing central nervous system. Consequently, e-cigarettes should be considered a potential public health threat, especially early in life, requiring further research and policy considerations.
Funder
National Institutes of Health
NYU NIEHS
Publisher
Oxford University Press (OUP)
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献