From data to discovery: AI-guided analysis of disease-relevant molecules in spinal muscular atrophy (SMA)

Author:

Tapken Ines12,Kuhn Daniela134,Hoffmann Nico1,Detering Nora T12,Schüning Tobias1,Billaud Jean-Noël5,Tugendreich Stuart5,Schlüter Nadine34,Green Jeff5,Krämer Andreas5,Claus Peter12

Affiliation:

1. SMATHERIA gGmbH – Non-Profit Biomedical Research Institute , Feodor-Lynen-Str. 31, Hannover 30625, Germany

2. Center for Systems Neuroscience (ZSN) , Bünteweg 2, Hannover 30559, Germany

3. Hannover Medical School , Department of Conservative Dentistry, , Carl-Neuberg-Str. 1, Hannover 30625, Germany

4. Periodontology and Preventive Dentistry , Department of Conservative Dentistry, , Carl-Neuberg-Str. 1, Hannover 30625, Germany

5. QIAGEN Digital Insights , 1001 Marshall Street,Redwood City, CA 94063, United States

Abstract

Abstract Spinal Muscular Atrophy is caused by partial loss of survival of motoneuron (SMN) protein expression. The numerous interaction partners and mechanisms influenced by SMN loss result in a complex disease. Current treatments restore SMN protein levels to a certain extent, but do not cure all symptoms. The prolonged survival of patients creates an increasing need for a better understanding of SMA. Although many SMN-protein interactions, dysregulated pathways, and organ phenotypes are known, the connections among them remain largely unexplored. Monogenic diseases are ideal examples for the exploration of cause-and-effect relationships to create a network describing the disease-context. Machine learning tools can utilize such knowledge to analyze similarities between disease-relevant molecules and molecules not described in the disease so far. We used an artificial intelligence-based algorithm to predict new genes of interest. The transcriptional regulation of 8 out of 13 molecules selected from the predicted set were successfully validated in an SMA mouse model. This bioinformatic approach, using the given experimental knowledge for relevance predictions, enhances efficient targeted research in SMA and potentially in other disease settings.

Funder

Deutsche Muskelstiftung

Philipp & Freunde—SMA Deutschland

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3