Genomic transcription factor binding site selection is edited by the chromatin remodeling factor CHD4

Author:

Saotome Mika1,Poduval Deepak B1,Grimm Sara A2ORCID,Nagornyuk Aerica1,Gunarathna Sakuntha1,Shimbo Takashi3,Wade Paul A3ORCID,Takaku Motoki1ORCID

Affiliation:

1. Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks , ND  58202 , USA

2. Biostatistics and Computational Biology Branch, National Institute of Environmental Health Science s, Research Triangle Park , NC  27709 , USA

3. Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park , NC  27709 , USA

Abstract

Abstract Biologically precise enhancer licensing by lineage-determining transcription factors enables activation of transcripts appropriate to biological demand and prevents deleterious gene activation. This essential process is challenged by the millions of matches to most transcription factor binding motifs present in many eukaryotic genomes, leading to questions about how transcription factors achieve the exquisite specificity required. The importance of chromatin remodeling factors to enhancer activation is highlighted by their frequent mutation in developmental disorders and in cancer. Here, we determine the roles of CHD4 in enhancer licensing and maintenance in breast cancer cells and during cellular reprogramming. In unchallenged basal breast cancer cells, CHD4 modulates chromatin accessibility. Its depletion leads to redistribution of transcription factors to previously unoccupied sites. During cellular reprogramming induced by the pioneer factor GATA3, CHD4 activity is necessary to prevent inappropriate chromatin opening. Mechanistically, CHD4 promotes nucleosome positioning over GATA3 binding motifs to compete with transcription factor–DNA interaction. We propose that CHD4 acts as a chromatin proof-reading enzyme that prevents unnecessary gene expression by editing chromatin binding activities of transcription factors.

Funder

Intramural Research Program of the National Institute of Environmental Health Sciences

National Institutes of Health

University of North Dakota School of Medicine and Health Sciences

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3