Kinetics of programmed and spontaneous ribosome sliding along the mRNA

Author:

Senyushkina Tamara1,Samatova Ekaterina1,Klimova Maria1,Rodnina Marina V1ORCID

Affiliation:

1. Max Planck Institute for Multidisciplinary Sciences, Department of Physical Biochemistry , 37077 Göttingen , Germany

Abstract

Abstract The ribosome can slide along mRNA without establishing codon-anticodon interactions. This movement can be regulated (programmed) by the elements encoded in the mRNA, as observed in bypassing of non-coding gap in gene 60 of bacteriophage T4, or occur spontaneously, such as during traversal by the 70S ribosome of the 3′UTRs or upon re-initiation on bacterial polycistronic genes. In this study, we investigate the kinetic mechanism underlying the programmed and spontaneous ribosome sliding. We show that the translation rate of gene 60 mRNA decreases as the ribosome approaches the take-off site, especially when the KKYK regulatory sequence in the nascent peptide reaches the constriction site in the ribosome exit tunnel. However, efficiency of bypassing increases when the ribosome traverses the gap quickly. With the non-coding gap exceeding the natural 50 nt, the processivity of sliding remains high up to 56 nt, but drops sharply beyond that due to the loss of mRNA elements support. Sliding efficiency is temperature-dependent; while temperature regulates the number of ribosomes initiating programmed bypassing, traversing the long gaps becomes increasingly unfavorable at lower temperatures. This data offers novel insights into the kinetic determinants of programmed and spontaneous ribosome sliding along the mRNA.

Funder

Max Planck Society

Deutsche Forschungsgemeinschaft

Leibniz Prize of the Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3