YjgA plays dual roles in enhancing PTC maturation

Author:

Du Mengtan12,Deng Chenke1,Yu Ting12,Zhou Qixin12,Zeng Fuxing12ORCID

Affiliation:

1. Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology , No. 1088 Xueyuan Avenue, Shenzhen 518055 , People's Republic of China

2. Institute for Biological Electron Microscopy, Southern University of Science and Technology , No. 1088 Xueyuan Avenue, Shenzhen 518055 Guangdong , People's Republic of China

Abstract

Abstract Ribosome biogenesis is a highly regulated cellular process that involves the control of numerous assembly factors. The small protein YjgA has been reported to play a role in the late stages of 50S assembly. However, the precise molecular mechanism underlying its function remains unclear. In this study, cryo-electron microscopy (cryo-EM) structures revealed that depletion of YjgA or its N-terminal loop in Escherichia coli both lead to the accumulation of immature 50S particles with structural abnormalities mainly in peptidyl transferase center (PTC) and H68/69 region. CryoDRGN analysis uncovered 8 and 6 distinct conformations of pre50S for ΔyjgA and YjgA-ΔNloop, respectively. These conformations highlighted the role of the N-terminal loop of YjgA in integrating uL16 and stabilizing H89 in PTC, which was further verified by the pull-down assays of YjgA and its mutants with uL16. Together with the function of undocking H68 through the binding of its C-terminal CTLH-like domain to the base of the L1 stalk, YjgA facilitates the maturation of PTC. This study identified critical domains of YjgA contributing to 50S assembly efficiency, providing a comprehensive understanding of the dual roles of YjgA in accelerating ribosome biogenesis and expanding our knowledge of the intricate processes governing cellular protein synthesis.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Guangdong Basic and Applied Basic Research Foundation

Guangdong Innovative and Entrepreneurial Research Team Program

Guangdong Program

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3