Affiliation:
1. Institute of Neuroscience, CNR , 56124 Pisa , Italy
2. Bio@SNS Laboratory of Biology, Scuola Normale Superiore , 56126 Pisa , Italy
3. Rita Levi-Montalcini European Brain Research Institute (EBRI) , 00161 Roma , Italy
4. Section of Human Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara , 44121 Ferrara , Italy
Abstract
Abstract
Rett syndrome is a rare genetic neurodevelopmental disease, affecting 1 in over 10 000 females born worldwide, caused by de novo mutations in the X-chromosome-located methyl-CpG-binding protein 2 (MeCP2) gene. Despite the great effort put forth by the scientific community, a therapy for this devastating disease is still needed. Here, we tested the therapeutic effects of a painless mutein of the nerve growth factor (NGF), called human NGF painless (hNGFp), via a non-invasive intranasal delivery in female MeCP2+/− mice. Of note, previous work had demonstrated a broad biodistribution of hNGFp in the mouse brain by the nasal delivery route.
We report that (i) the long-term lifelong treatment of MeCP2+/− mice with hNGFp, starting at 2 months of age, increased the chance of survival while also greatly improving behavioural parameters. Furthermore, when we assessed the phenotypic changes brought forth by (ii) a short-term 1-month-long hNGFp-treatment, starting at 3 months of age (right after the initial presentation of symptoms), we observed the rescue of a well known neuronal target population of NGF, cholinergic neurons in the medial septum. Moreover, we reveal a deficit in microglial morphology in MeCP2+/− mice, completely reversed in treated animals. This effect on microglia is in line with reports showing microglia to be a TrkA-dependent non-neuronal target cell population of NGF in the brain.
To understand the immunomodulatory activity of hNGFp, we analysed the cytokine profile after hNGFp treatment in MeCP2+/− mice, to discover that the treatment recovered the altered expression of key neuroimmune-communication molecules, such as fractalkine.
The overall conclusion is that hNGFp delivered intranasally can ameliorate symptoms in the MeCP2+/− model of Rett syndrome, by exerting strong neuroprotection with a dual mechanism of action: directly on target neurons and indirectly via microglia.
Funder
International Rett Syndrome Foundation
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献