Network degeneration in Parkinson’s disease: multimodal imaging of nigro-striato-cortical dysfunction

Author:

Ruppert Marina C12,Greuel Andrea1,Tahmasian Masoud3,Schwartz Frank4,Stürmer Sophie56,Maier Franziska7,Hammes Jochen8,Tittgemeyer Marc59,Timmermann Lars12,van Eimeren Thilo681011,Drzezga Alexander81112,Eggers Carsten12

Affiliation:

1. Department of Neurology, University Hospital of Marburg, Germany

2. Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany

3. Institue of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran

4. Department of Neurology, Hospital of the Brothers of Mercy, Trier, Germany

5. Max Planck Institute for Metabolism Research, Cologne, Germany

6. Department of Neurology, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany

7. Department of Psychiatry, University Hospital Cologne, Medical Faculty, Cologne, Germany

8. Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany

9. Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany

10. Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Germany

11. German Center for Neurodegenerative Diseases (DZNE), Germany

12. Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-2), Research Center Jülich, Germany

Abstract

Abstract The spreading hypothesis of neurodegeneration assumes an expansion of neural pathologies along existing neural pathways. Multimodal neuroimaging studies have demonstrated distinct topographic patterns of cerebral pathologies in neurodegeneration. For Parkinson’s disease the hypothesis so far rests largely on histopathological evidence of α-synuclein spreading in a characteristic pattern and progressive nigrostriatal dopamine depletion. Functional consequences of nigrostriatal dysfunction on cortical activity remain to be elucidated. Our goal was to investigate multimodal imaging correlates of degenerative processes in Parkinson’s disease by assessing dopamine depletion and its potential effect on striatocortical connectivity networks and cortical metabolism in relation to parkinsonian symptoms. We combined 18F-DOPA-PET, 18F-fluorodeoxyglucose (FDG)-PET and resting state functional MRI to multimodally characterize network alterations in Parkinson’s disease. Forty-two patients with mild-to-moderate stage Parkinson’s disease and 14 age-matched healthy control subjects underwent a multimodal imaging protocol and comprehensive clinical examination. A voxel-wise group comparison of 18F-DOPA uptake identified the exact location and extent of putaminal dopamine depletion in patients. Resulting clusters were defined as seeds for a seed-to-voxel functional connectivity analysis. 18F-FDG metabolism was compared between groups at a whole-brain level and uptake values were extracted from regions with reduced putaminal connectivity. To unravel associations between dopaminergic activity, striatocortical connectivity, glucose metabolism and symptom severity, correlations between normalized uptake values, seed-to-cluster β-values and clinical parameters were tested while controlling for age and dopaminergic medication. Aside from cortical hypometabolism, 18F-FDG-PET data for the first time revealed a hypometabolic midbrain cluster in patients with Parkinson’s disease that comprised caudal parts of the bilateral substantia nigra pars compacta. Putaminal dopamine synthesis capacity was significantly reduced in the bilateral posterior putamen and correlated with ipsilateral nigral 18F-FDG uptake. Resting state functional MRI data indicated significantly reduced functional connectivity between the dopamine depleted putaminal seed and cortical areas primarily belonging to the sensorimotor network in patients with Parkinson’s disease. In the inferior parietal cortex, hypoconnectivity in patients was significantly correlated with lower metabolism (left P = 0.021, right P = 0.018). Of note, unilateral network alterations quantified with different modalities corresponded with contralateral motor impairments. In conclusion, our results support the hypothesis that degeneration of nigrostriatal fibres functionally impairs distinct striatocortical connections, disturbing the efficient interplay between motor processing areas and impairing motor control in patients with Parkinson’s disease. The present study is the first to reveal trimodal evidence for network-dependent degeneration in Parkinson’s disease by outlining the impact of functional nigrostriatal pathway impairment on striatocortical functional connectivity networks and cortical metabolism.

Funder

German Research Association

DFG

Clinical Research Group 219

Publisher

Oxford University Press (OUP)

Subject

Clinical Neurology

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3