Proteome reorganization and amino acid metabolism during germination and seedling establishment in Lupinus albus

Author:

Angermann Cecile1,Heinemann Björn1ORCID,Hansen Jule2,Töpfer Nadine3ORCID,Braun Hans-Peter2ORCID,Hildebrandt Tatjana M1ORCID

Affiliation:

1. Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne , Zülpicher Straße 47a, 50674 Cologne , Germany

2. Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover , Herrenhäuser Straße 2, 30419 Hannover , Germany

3. Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne , Luxemburger Str. 90, 50939 Cologne , Germany

Abstract

Abstract During germination plants rely entirely on their seed storage compounds to provide energy and precursors for the synthesis of macromolecular structures until the seedling has emerged from the soil and photosynthesis can be established. Lupin seeds use proteins as their major storage compounds, accounting for up to 40% of the seed dry weight. Lupins are therefore a valuable complement to soy as a source of plant protein for human and animal nutrition. The aim of this study was to elucidate how storage protein metabolism is coordinated with other metabolic processes to meet the requirements of the growing seedling. In a quantitative approach, we analysed seedling growth, as well as alterations in biomass composition, the proteome, and metabolite profiles during germination and seedling establishment in Lupinus albus. The reallocation of nitrogen resources from seed storage proteins to functional seed proteins was mapped based on a manually curated functional protein annotation database. Although classified as a protein crop, Lupinus albus does not use amino acids as a primary substrate for energy metabolism during germination. However, fatty acid and amino acid metabolism may be integrated at the level of malate synthase to combine stored carbon from lipids and proteins into gluconeogenesis.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3