Olfactometric Comparison of the Volatile Insecticide, Metofluthrin, Through Behavioral Responses of Aedes albopictus (Diptera: Culicidae)

Author:

Bibbs Christopher S123ORCID,Kline Jedidiah4,Kline Daniel L4,Estaver Jim5,Strohschein Rudolph5,Allan Sandra A4,Kaufman Phillip E1,Xue Rui-De2,Batich Christopher D3

Affiliation:

1. Entomology and Nematology Department, University of Florida, Gainesville, FL

2. Anastasia Mosquito Control District of St. Johns County, Augustine, FL

3. Material Science and Engineering Department, University of Florida, Gainesville, FL

4. United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL

5. Sigma Scientific, LLC, Micanopy, FL

Abstract

Abstract Testing behavioral response to insecticidal volatiles requires modifications to the existing designs of olfactometers. To create a testing apparatus in which there is no chemical memory to confound tests, we detail the technical aspects of a new tool with design influences from other olfactometry tools. In addition, this new tool was used to evaluate a novel formulation of metofluthrin for use as an outdoor residual treatment. After sourcing materials to prioritize glass and metal construction, a modular wind tunnel was developed that hybridizes wind tunnel and olfactometer specifications. Volatile contaminants were removed by strong ultraviolet light within the chamber before and between trials. Repellent trials were conducted with an experimental formulation of metofluthrin and a commercial formulation of esfenvalerate, prallethrin, and piperonyl butoxide (Onslaught Fast Cap) against Aedes albopictus (Skuse). Toxicant vapors were delivered with attractants from a lure with behavioral responses scored 20 min post-exposure. Upwind attraction to the attractant lure and the Onslaught Fast Cap plus lure resulted in 90 and 75% capture, respectively. In contrast, metofluthrin vapors resulted in less than 10% attraction, while also causing repellency, disorientation, knockdown, and mortality effects. Our findings demonstrated that an inert modular wind tunnel was functional for mitigating toxic secondary exposures of spatial repellents amidst complex behavioral analysis in mosquitoes. The resulting observations with formulated metofluthrin positively reinforce the merit of transitioning metofluthrin into expanded roles in mosquito management.

Funder

Florida Department of Agriculture and Consumer Services

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Insect Science,General Veterinary,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3