Artificial intelligence–aided steatosis assessment in donor livers according to the Banff consensus recommendations

Author:

Jiao Jingjing1,Tang Haiming1ORCID,Sun Nanfei2,Zhang Xuchen1

Affiliation:

1. Department of Pathology, Yale School of Medicine , New Haven, CT , US

2. Department of Management Information Systems, College of Business, University of Houston Clear Lake , Houston, TX , US

Abstract

Abstract Objectives Severe macrovesicular steatosis in donor livers is associated with primary graft dysfunction. The Banff Working Group on Liver Allograft Pathology has proposed recommendations for steatosis assessment of donor liver biopsy specimens with a consensus for defining “large droplet fat” (LDF) and a 3-step algorithmic approach. Methods We retrieved slides and initial pathology reports from potential liver donor biopsy specimens from 2010 to 2021. Following the Banff approach, we reevaluated LDF steatosis and employed a computer-assisted manual quantification protocol and artificial intelligence (AI) model for analysis. Results In a total of 113 slides from 88 donors, no to mild (<33%) macrovesicular steatosis was reported in 88.5% (100/113) of slides; 8.8% (10/113) was reported as at least moderate steatosis (≥33%) initially. Subsequent pathology evaluation, following the Banff recommendation, revealed that all slides had LDF below 33%, a finding confirmed through computer-assisted manual quantification and an AI model. Correlation coefficients between pathologist and computer-assisted manual quantification, between computer-assisted manual quantification and the AI model, and between the AI model and pathologist were 0.94, 0.88, and 0.81, respectively (P < .0001 for all). Conclusions The 3-step approach proposed by the Banff Working Group on Liver Allograft Pathology may be followed when evaluating steatosis in donor livers. The AI model can provide a rapid and objective assessment of liver steatosis.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3