Star-forming environments in smoothed particle magnetohydrodynamics simulations I: clump extraction and properties

Author:

Wurster James1ORCID,Rowan Connar12

Affiliation:

1. Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St. Andrews , North Haugh, St Andrews, Fife, KY16 9SS, UK

2. Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory , Parks Road, Oxford, OX1 3PU, UK

Abstract

ABSTRACT What is the nature of a star-forming clump? Observations reveal these to be chaotic environments being modified and influenced by many physical processes. However, numerical simulations often define these initial star-forming clumps to be idealized objects. In this paper, we define and analyse 109 star-forming clumps extracted from our previous low-mass star cluster simulations. To define a clump, we identify all the gas in a simulation that ever becomes bound to or accreted onto a star, then follow the gas backwards in time until it decreases to a critical density. This gas and its neighbouring gas are defined as our star-forming clump. Our clumps span a mass range of 0.15 ≲ M/M⊙ ≲ 10.2, while the density range within each clump spans 2–4 orders of magnitude. The gas density distribution is not smooth, indicating that it is highly structured. The clumps are turbulent, with no coherent rotation. Independent of the initial magnetic field strength of the parent cloud, all clumps yield a similar range of field strengths. The clump magnetic field is ordered but not reflective of the initial field geometry of the parent cloud. In general, most clump properties have a slight trend with clump mass but are independent of (or only very weakly dependent on) the properties of the parent cloud. We conclude that stars are born from a wide variety of environments and there is not a single universal star-forming clump.

Funder

European Research Council

Horizon 2020

STFC

BEIS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3