The number of transits per epoch for transiting misaligned circumbinary planets

Author:

Chen Zirui1ORCID,Kipping David1ORCID

Affiliation:

1. Department of Astronomy, Columbia University , New York, NY 10027, USA

Abstract

ABSTRACT The growing catalogue of circumbinary planets strengthens the notion that planets form in a diverse range of conditions across the cosmos. Transiting circumbinary planets yield especially important insights and many examples are now known, in broadly coplanar obits with respect to their binary. Studies of circumbinary discs suggest misaligned transiting examples could also plausibly exist, but their existence would exacerbate the already challenging feat of automatic detection. In this work, we synthesize populations of such planets and consider the number of transits per epoch they produce, forming integer sequences. For isotropic distributions, such sequences will appear foreign to conventional expectation, rarely (∼1 per cent) producing the signature double-transits we have come to expect for circumbinaries, instead producing sparse sequences dominated by zero-transit epochs (∼80 per cent). Despite their strangeness, we demonstrate that these sequences will be non-random and that the two preceding epochs predict the next to high accuracy. Additionally, we show that even when clustering the transits into grouped epochs, they often appear unphysical if erroneously assuming a single star, due to the missing epochs. Crucially, missing epochs mean highly isotropic populations can trick the observer into assigning the wrong period in up to a quarter of cases, adding further confusion. Finally, we show that the transit sequences encode the inclination distribution and demonstrate a simple inference method that successfully matches the injected truth. Our work highlights how the simple act of flagging transits can be used to provide an initial, vetting-level analysis of misaligned transiting circumbinary planets.

Funder

NASA Science Mission Directorate

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3