Sky subtraction in an era of low surface brightness astronomy

Author:

Kelvin Lee S123ORCID,Hasan Imran2ORCID,Tyson J Anthony2ORCID

Affiliation:

1. Department of Astrophysical Sciences, Princeton University , 4 Ivy Lane, Princeton, NJ 08544, USA

2. Department of Physics, University of California , One Shields Ave., Davis, CA 95616, USA

3. Astrophysics Research Institute, Liverpool John Moores University , IC2, LSP, 146 Brownlow Hill, Liverpool L3 5RF, UK

Abstract

ABSTRACT The Vera C. Rubin Observatory Wide-Fast Deep sky survey will reach unprecedented surface brightness depths over tens of thousands of square degrees. Surface brightness photometry has traditionally been a challenge. Current algorithms which combine object detection with sky estimation systematically oversubtract the sky, biasing surface brightness measurements at the faint end and destroying or severely compromising low surface brightness light. While it has recently been shown that properly accounting for undetected faint galaxies and the wings of brighter objects can in principle recover a more accurate sky estimate, this has not yet been demonstrated in practice. Obtaining a consistent spatially smooth underlying sky estimate is particularly challenging in the presence of representative distributions of bright and faint objects. In this paper, we use simulations of crowded and uncrowded fields designed to mimic Hyper Suprime-Cam data to perform a series of tests on the accuracy of the recovered sky. Dependence on field density, galaxy type, and limiting flux for detection are all considered. Several photometry packages are utilized: source extractor, gnuastro, and the LSST science pipelines. Each is configured in various modes, and their performance at extreme low surface brightness analysed. We find that the combination of the source extractor software package with novel source model masking techniques consistently produce extremely faint output sky estimates, by up to an order of magnitude, as well as returning high fidelity output science catalogues.

Funder

National Science Foundation

Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3