AstroSat view of GRS 1915+105 during the soft state: detection of HFQPOs and estimation of mass and spin

Author:

Sreehari H12ORCID,Nandi Anuj1,Das Santabrata3ORCID,Agrawal V K1,Mandal Samir4,Ramadevi M C1,Katoch Tilak5

Affiliation:

1. Space Astronomy Group, ISITE Campus, U. R. Rao Satellite Centre, Outer Ring Road, Marathahalli, Bangalore 560037, India

2. Indian Institute of Astrophysics, Bangalore 560034, India

3. Indian Institute of Technology Guwahati, Guwahati 781039, India

4. Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, India

5. DAA, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India

Abstract

ABSTRACT We report the results of AstroSat observations of GRS 1915+105 obtained using 100 ks Guaranteed Time during the soft state. The colour–colour diagram indicates a variability class of δ with the detection of high-frequency quasi-periodic oscillation (HFQPO) in the power density spectra. The HFQPO is seen to vary in the frequency range of 67.96–70.62 Hz with percentage rms ∼0.83–1.90 per cent and significance varying from 1.63 to 7.75. The energy dependent power spectra show that the HFQPO features are dominant only in 6–25 keV energy band. The broad-band energy spectra (0.7–50 keV) of Soft X-ray Telescope and Large Area X-ray Proportional Counter modelled with nthComp and powerlaw imply that the source has an extended corona in addition to a compact ‘Comptonizing corona’ that produces high-energy emission and exhibits HFQPOs. The broad-band spectral modelling indicates that the source spectra are well described by thermal Comptonization with electron temperature (kTe) of 2.07–2.43 keV and photon index (Γnth) between 1.73 and 2.45 with an additional powerlaw component of photon index (ΓPL) between 2.94 and 3.28. The norm of nthComp component is high (∼8) during the presence of strong HFQPO and low (∼3) during the absence of HFQPO. Further, we model the energy spectra with the kerrbb model to estimate the accretion rate, mass, and spin of the source. Our findings indicate that the source accretes at super-Eddington rate of $1.17\!-\!1.31~ \dot{M}_{\rm Edd}$. Moreover, we find the mass and spin of the source as 12.44–13.09 M⊙ and 0.990–0.997 with $90{{\ \rm per\ cent}}$ confidence suggesting that GRS 1915+105 is a maximally rotating stellar mass X-ray binary black hole source.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3