Hybrid GRMHD and force-free simulations of black hole accretion

Author:

Chael Andrew1ORCID

Affiliation:

1. Princeton Gravity Initiative, Princeton University , Princeton, NJ 08540 , USA

Abstract

ABSTRACT We present a new approach for stably evolving general relativistic magnetohydrodynamic (GRMHD) simulations in regions where the magnetization $\sigma =b^2/\rho c^2$ becomes large. GRMHD codes typically struggle to evolve plasma above $\sigma \approx 100$ in simulations of black hole accretion. To ensure stability, GRMHD codes will inject mass density artificially to the simulation as necessary to keep the magnetization below a ceiling value $\sigma _{\rm max}$. We propose an alternative approach where the simulation transitions to solving the equations of general relativistic force-free electrodynamics (GRFFE) above a magnetization $\sigma _{\rm trans}$. We augment the GRFFE equations in the highly magnetized region with approximate equations to evolve the decoupled field-parallel velocity and plasma energy density. Our hybrid scheme is explicit and easily added to the framework of standard-volume GRMHD codes. We present a variety of tests of our method, implemented in the GRMHD code koral, and we show results from a 3D hybrid GRMHD + GRFFE simulation of a magnetically arrested disc (MAD) around a spinning black hole. Our hybrid MAD simulation closely matches the average properties of a standard GRMHD MAD simulation with the same initial conditions in low magnetization regions, but it achieves a magnetization $\sigma \approx 10^6$ in the evacuated jet funnel. We present simulated horizon-scale images of both simulations at 230 GHz with the black hole mass and accretion rate matched to M87*. Images from the hybrid simulation are less affected by the choice of magnetization cut-off $\sigma _{\rm cut}$ imposed in radiative transfer than images from the standard GRMHD simulation.

Funder

National Science Foundation

Harvard University

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3