Affiliation:
1. Astrophysikalisches Institut und Universitätssternwarte, Friedrich-Schiller-Universität Jena, Schillergäßchen 2-3, D-07745 Jena, Germany
2. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
Abstract
ABSTRACT
Debris belts on the periphery of planetary systems, encompassing the region occupied by planetary orbits, are massive analogues of the Solar system’s Kuiper belt. They are detected by thermal emission of dust released in collisions amongst directly unobservable larger bodies that carry most of the debris disc mass. We estimate the total mass of the discs by extrapolating up the mass of emitting dust with the help of collisional cascade models. The resulting mass of bright debris discs appears to be unrealistically large, exceeding the mass of solids available in the systems at the preceding protoplanetary stage. We discuss this ‘mass problem’ in detail and investigate possible solutions to it. These include uncertainties in the dust opacity and planetesimal strength, variation of the bulk density with size, steepening of the size distribution by damping processes, the role of the unknown ‘collisional age’ of the discs, and dust production in recent giant impacts. While we cannot rule out the possibility that a combination of these might help, we argue that the easiest solution would be to assume that planetesimals in systems with bright debris discs were ‘born small’, with sizes in the kilometre range, especially at large distances from the stars. This conclusion would necessitate revisions to the existing planetesimal formation models, and may have a range of implications for planet formation. We also discuss potential tests to constrain the largest planetesimal sizes and debris disc masses.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献