Black widow evolution: magnetic braking by an ablated wind

Author:

Ginzburg Sivan1,Quataert Eliot1ORCID

Affiliation:

1. Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720, USA

Abstract

ABSTRACT Black widows are close binary systems in which a millisecond pulsar is orbited by a companion, a few per cent the mass of the sun. It has been suggested that the pulsar’s rotationally powered γ-ray luminosity gradually evaporates the companion, eventually leaving behind an isolated millisecond pulsar. The evaporation efficiency is determined by the temperature Tch ∝ F2/3 to which the outflow is heated by the flux F on a dynamical time-scale. Evaporation is most efficient for companions that fill their Roche lobes. In this case, the outflow is dominated by a cap around the L1 point with an angle θg ∼ (Tch/Tg)1/2, and the evaporation time is tevap = 0.46(Tch/Tg)−2 Gyr, where Tg > Tch is the companion’s virial temperature. We apply our model to the observed black widow population, which has increased substantially over the last decade, considering each system’s orbital period, companion mass, and pulsar spin-down power. While the original black widow (PSR B1957+20) evaporates its companion on a few Gyr time-scale, direct evaporation on its own is too weak to explain the overall population. We propose instead that the evaporative wind couples to the companion’s magnetic field, removes angular momentum from the binary, and maintains stable Roche lobe overflow. While a stronger wind carries more mass, it also reduces the Alfvén radius, making this indirect magnetic braking mechanism less dependent on the flux $t_{\rm mag}\propto t_{\rm evap}^{1/3}$. This reduces the scatter in evolution times of observed systems, thus better explaining the combined black widow and isolated millisecond pulsar populations.

Funder

Simons Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The He star donor channel towards the black widow PSR J1953+1844;Monthly Notices of the Royal Astronomical Society;2023-11-22

2. Optical Identification of the Shortest-period Spider Pulsar System M71E;The Astrophysical Journal;2023-10-01

3. Convective dynamos of black widow companions;Monthly Notices of the Royal Astronomical Society;2023-08-17

4. A binary pulsar in a 53-minute orbit;Nature;2023-06-20

5. A highly magnetized environment in a pulsar binary system;Nature;2023-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3