State transitions of GX 339-4 during its outburst rising phase

Author:

Shui Q C123,Yin H X1,Zhang S2,Qu J L23,Chen Y P2,Kong L D23,Wang P J23,Zhang H F1,Song J X1,Ning B1,Wang Y F1,Chang Z2,Zhang P2

Affiliation:

1. Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai, Shandong 264209, China

2. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China

3. University of Chinese Academy of Sciences, Chinese Academy of Sciences, 100049 Beijing, China

Abstract

ABSTRACT We investigate systematically four outbursts of black hole system GX 339-4 observed by the Rossi X-ray Timing Explorer (RXTE) in both spectral and timing domains and find that these outbursts have some common properties, although they experience different ‘q’ tracks in the hardness–intensity diagram (HID). While the spectral indices are around 1.5 in the low/hard state (LHS) and 2.4 in the soft intermediate state (SIMS) and high/soft state (HSS), the spectral parameters of thermal, non-thermal, and reflection components vary significantly in transitions from the LHS to HIMS. Also, the quasi-periodic oscillation (QPO) shows a peculiar behaviour during the state transition between the LHS and HIMS: the RMS drop of the type C fundamental QPO is accompanied by the appearance of the second harmonic. Interestingly, the QPO RMS is found to have a similar linear relationship with the non-thermal fraction of emission in different outbursts. These findings provide more clues to aid our understanding of the outbursts of a black hole X-ray binary system.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3