Building the Galilean moons system via pebble accretion and migration: a primordial resonant chain

Author:

Madeira Gustavo1ORCID,Izidoro André21ORCID,Giuliatti Winter Silvia M1

Affiliation:

1. Grupo de Dinâmica Orbital & Planetologia, The University of São Paulo State-UNESP, Av. Ariberto Pereira da Cunha, 333, Guaratinguetá, SP 12516-410, Brazil

2. Department of Earth, Environmental and Planetary Sciences, MS 126, Rice University, Houston, TX 77005, USA

Abstract

ABSTRACT The origins of the Galilean satellites – namely Io, Europa, Ganymede, and Callisto – is not fully understood yet. Here we use N-body numerical simulations to study the formation of Galilean satellites in a gaseous circumplanetary disc around Jupiter. Our model includes the effects of pebble accretion, gas-driven migration, and gas tidal damping and drag. Satellitesimals in our simulations first grow via pebble accretion and start to migrate inwards. When they reach the trap at the disc inner edge, scattering events and collisions take place promoting additional growth. Growing satellites eventually reach a multiresonant configuration anchored at the disc inner edge. Our results show that an integrated pebble flux of ≥2 × 10−3 MJ results in the formation of satellites with masses typically larger than those of the Galilean satellites. Our best match to the masses of the Galilean satellites is produced in simulations where the integrated pebble flux is ∼10−3 MJ. These simulations typically produce between three and five satellites. In our best analogues, adjacent satellite pairs are all locked in 2:1 mean motion resonances. However, they have also moderately eccentric orbits (∼0.1), unlike the current real satellites. We propose that the Galilean satellites system is a primordial resonant chain, similar to exoplanet systems as TRAPPIST-1, Kepler-223, and TOI-178. Callisto was probably in resonance with Ganymede in the past but left this configuration – without breaking the Laplacian resonance – via divergent migration due to tidal planet–satellite interactions. These same effects further damped the orbital eccentricities of these satellites down to their current values (∼0.001). Our results support the hypothesis that Io and Europa were born with water-ice rich compositions and lost all/most of their water afterwards. Firmer constraints on the primordial compositions of the Galilean satellites are crucial to distinguish formation models.

Funder

FAPESP

CNPq

CAPES

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3