Constraints on sub-terrestrial free-floating planets from Subaru microlensing observations

Author:

DeRocco William12ORCID,Smyth Nolan12,Profumo Stefano12ORCID

Affiliation:

1. Department of Physics, University of California , Santa Cruz (UCSC), Santa Cruz, CA 95064 , USA

2. Santa Cruz Institute for Particle Physics (SCIPP) , Santa Cruz, CA 95064 , USA

Abstract

ABSTRACT The abundance of protoplanetary bodies ejected from their parent star system is presently poorly constrained. With only two existing optical observations of interstellar objects in the 108–1010 kg mass range and a small number of robust microlensing observations of free-floating planets (FFPs) in the 1024–1025 kg mass range, there is a large range of masses for which there are no existing measurements of the unbound population. The three primary microlensing surveys currently searching for FFPs operate at a cadence greater than 15 min, which limits their ability to observe events associated with bodies with a mass much below an Earth mass. We demonstrate that existing high-cadence observations of M31 with the Subaru Hyper Suprime-Cam place constraints on the abundance of unbound objects at sub-terrestrial masses, with peak sensitivity at 10−4 M⊕ for Milky Way lenses and 10−1 M⊕ for lenses in M31. For a fiducial $\frac{dn}{dM}\propto M^{-2}$ mass distribution, we find that the abundance of unbound objects is constrained to $n_\text{unbound} \lt 1.4 \times 10^{7} ~\rm {pc}^{-3}$ for masses within 1 dex of 10−4 M⊕. Additionally, we compute limits on an artificial ‘monochromatic’ distribution of unbound objects and compare to existing literature, demonstrating that the assumed spatial distribution of lenses has very significant consequences for the sensitivity of microlensing surveys. While the observations ultimately do not probe abundances suggested by current models of planetary formation, our limits place direct observational constraints on the unbound population in the sub-terrestrial mass range and motivate new observational strategies for microlensing surveys.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Free-floating ‘planets’ in the macrolensed quasar Q2237+0305;Monthly Notices of the Royal Astronomical Society;2024-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3