Efficient, divergence-free, high-order MHD on 3D spherical meshes with optimal geodesic meshing

Author:

Balsara Dinshaw S12,Florinski Vladimir3,Garain Sudip2,Subramanian Sethupathy2,Gurski Katharine F4

Affiliation:

1. ACMS Department, University of Notre Dame, Notre Dame, IN, 46545, USA

2. Physics Department, University of Notre Dame, Notre Dame, IN 46556, USA

3. Space Physics, University of Alabama, Huntsville, AL 35899, USA

4. Department of Mathematics, Howard University, Washington, DC 20059, USA

Abstract

ABSTRACT There is a great need in several areas of astrophysics and space physics to carry out high order of accuracy, divergence-free MHD simulations on spherical meshes. This requires us to pay careful attention to the interplay between mesh quality and numerical algorithms. Methods have been designed that fundamentally integrate high-order isoparametric mappings with the other high accuracy algorithms that are needed for divergence-free MHD simulations on geodesic meshes. The goal of this paper is to document such algorithms that are implemented in the geodesic mesh version of the RIEMANN code. The fluid variables are reconstructed using a special kind of WENO-AO algorithm that integrates the mesh geometry into the reconstruction process from the ground-up. A novel divergence-free reconstruction strategy for the magnetic field that performs efficiently at all orders, even on isoparametrically mapped meshes, is then presented. The MHD equations are evolved in space and time using a novel ADER predictor algorithm that is efficiently adapted to the isoparametrically mapped geometry. The application of one-dimensional and multidimensional Riemann solvers at suitable locations on the mesh then provides the corrector step. The corrector step for the magnetic field uses a Yee-type staggering of magnetic fields. This results in a scheme with divergence-free update for the magnetic field. The use of ADER enables a one-step update that only requires one messaging operation per complete timestep. This is very beneficial for parallel processing. Several accuracy tests are presented as are stringent test problems. PetaScale performance is also demonstrated on the largest available supercomputers.

Funder

National Sleep Foundation

National Aeronautics and Space Administration

Simons Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3