Fluid simulations of cosmic ray-modified shocks

Author:

Tsung Tsun Hin Navin1,Oh S Peng1,Jiang(姜燕飞) Yan-Fei2

Affiliation:

1. Department of Physics, University of California, Santa Barbara, CA 93106, USA

2. Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA

Abstract

ABSTRACT Cosmic ray (CR)-modified shocks are a demanding test of numerical codes. We use them to test and validate the two-moment method for CR hydrodynamics, as well as characterize the realism of CR shock acceleration in two-fluid simulations which inevitably arises. Previously, numerical codes were unable to incorporate streaming in this demanding regime, and have never been compared against analytic solutions. First, we find a new analytic solution highly discrepant in acceleration efficiency from the standard solution. It arises from bi-directional streaming of CRs away from the subshock, similar to a Zeldovich spike in radiative shocks. Since fewer CRs diffuse back upstream, this favours a much lower acceleration efficiency, typically ${\lesssim}10{{\ \rm per\ cent}}$ (even for Mach number > 10) as opposed to ${\gtrsim}50{{\ \rm per\ cent}}$ found in previous analytic work. At Mach number ≳10, the new solution bifurcates into three branches, with efficient, intermediate, and inefficient CR acceleration. Our two-moment code accurately recovers these solutions across the entire parameter space probed, with no ad hoc closure relations. For generic initial conditions, the inefficient branch is robustly chosen by the code; the intermediate branch is unstable. The preferred branch is very weakly modified by CRs. At high Mach numbers (≳10), the gas jump conditions approach that of a purely hydrodynamic shock, and a sub-grid prescription for thermal injection is required for reasonable acceleration efficiencies ${\sim}10{{\ \rm per\ cent}}$. CR-modified shocks have very long equilibration times (∼1000 diffusion time) required to develop the precursor, which must be resolved by ≳10 cells for convergence. Non-equilibrium effects, poor resolution, and obliquity of the magnetic field all reduce CR acceleration efficiency. Shocks in galaxy-scale simulations will generally contribute little to CR acceleration without sub-grid modification.

Funder

National Science Foundation

Simons Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The impact of cosmic rays on thermal and hydrostatic stability in galactic haloes;Monthly Notices of the Royal Astronomical Society;2023-09-12

2. Turbulent Reacceleration of Streaming Cosmic Rays;The Astrophysical Journal;2022-12-01

3. Entropy-conserving Scheme for Modeling Nonthermal Energies in Fluid Dynamics Simulations;The Astrophysical Journal Supplement Series;2022-07-20

4. The cosmic-ray staircase: the outcome of the cosmic-ray acoustic instability;Monthly Notices of the Royal Astronomical Society;2022-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3