In-situ versus accreted Milky Way globular clusters: a new classification method and implications for cluster formation

Author:

Belokurov Vasily1ORCID,Kravtsov Andrey234ORCID

Affiliation:

1. Institute of Astronomy, Madingley Rd , Cambridge CB3 0HA , UK

2. Department of Astronomy and Astrophysics, The University of Chicago , Chicago, IL 60637 , USA

3. Kavli Institute for Cosmological Physics, The University of Chicago , Chicago, IL 60637 , USA

4. Enrico Fermi Institute, The University of Chicago , Chicago, IL 60637 , USA

Abstract

ABSTRACT We present a new scheme for the classification of the in-situ and accreted globular clusters (GCs). The scheme uses total energy E and z-component of the orbital angular momentum and is calibrated using the [Al/Fe] abundance ratio. We demonstrate that this classification results in two GC populations with distinct spatial, kinematic, and chemical abundance distributions. The in-situ GCs are distributed within the central 10 kpc of the Galaxy in a flattened configuration aligned with the Milky Way (MW) disc, while the accreted GCs have a wide distribution of distances and a spatial distribution close to spherical. In-situ and accreted GCs have different $\rm [Fe/H]$ distributions with the well-known bimodality present only in the metallicity distribution of the in-situ GCs. Furthermore, the accreted and in-situ GCs are well separated in the plane of $\rm [Al/Fe]-[Mg/Fe]$ abundance ratios and follow distinct sequences in the age–$\rm [Fe/H]$ plane. The in-situ GCs in our classification show a clear disc spin-up signature – the increase of median Vϕ at metallicities −1.3 < [Fe/H] < −1 similar to the spin-up in the in-situ field stars. This signature signals the MW’s disc formation, which occurred ≈11.7−12.7 Gyr ago (or at z ≈ 3.1−5.3) according to in-situ GC ages. In-situ GCs with metallicities of $\rm [Fe/H]\gtrsim -1.3$ were thus born in the MW disc, while lower metallicity in-situ GCs were born during early, turbulent, pre-disc stages of the evolution of the Galaxy and are part of its Aurora stellar component.

Funder

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3