Simulations of 60Fe entrained in ejecta from a near-Earth supernova: effects of observer motion

Author:

Chaikin Evgenii1ORCID,Kaurov Alexander A234,Fields Brian D5ORCID,Correa Camila A6ORCID

Affiliation:

1. Leiden Observatory, Leiden University , PO Box 9513, NL-2300 RA Leiden, the Netherlands

2. Department of the History of Science, Harvard University , Cambridge, MA 02138, USA

3. Blue Marble Space Institute of Science , Seattle, WA 98104, USA

4. Institute for Advanced Study , 1 Einstein Drive, Princeton, NJ 08540, USA

5. Department of Astronomy, University of Illinois , Urbana, IL 61801, USA

6. Institute of Physics, University of Amsterdam , Science Park 904, NL-1098 XH Amsterdam, the Netherlands

Abstract

ABSTRACT Recent studies have shown that live (not decayed) radioactive 60Fe is present in deep-ocean samples, Antarctic snow, lunar regolith, and cosmic rays. 60Fe represents supernova (SN) ejecta deposited in the Solar system around $3 \, \rm Myr$ ago, and recently an earlier pulse ${\approx}7 \ \rm Myr$ ago has been found. These data point to one or multiple near-Earth SN explosions that presumably participated in the formation of the Local Bubble. We explore this theory using 3D high-resolution smooth-particle hydrodynamical simulations of isolated SNe with ejecta tracers in a uniform interstellar medium (ISM). The simulation allows us to trace the SN ejecta in gas form and those eject in dust grains that are entrained with the gas. We consider two cases of diffused ejecta: when the ejecta are well-mixed in the shock and when they are not. In the latter case, we find that these ejecta remain far behind the forward shock, limiting the distance to which entrained ejecta can be delivered to ≈100 pc in an ISM with $n_\mathrm{H}=0.1\,\, \rm cm^{-3}$ mean hydrogen density. We show that the intensity and the duration of 60Fe accretion depend on the ISM density and the trajectory of the Solar system. Furthermore, we show the possibility of reproducing the two observed peaks in 60Fe concentration with this model by assuming two linear trajectories for the Solar system with 30-km s−1 velocity. The fact that we can reproduce the two observed peaks further supports the theory that the 60Fe signal was originated from near-Earth SNe.

Funder

BEIS

STFC

Durham University

NWO

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3