Combined magnetic field evolution in neutron star cores and crusts: ambipolar diffusion, Hall effect, and Ohmic dissipation

Author:

Skiathas Dimitrios123ORCID,Gourgouliatos Konstantinos N1ORCID

Affiliation:

1. Department of Physics, University of Patras , Patras, Rio 26504 , Greece

2. Southeastern Universities Research Association , Washington, DC 20005 , USA

3. Astrophysics Science Division, NASA/Goddard Space Flight Center , Greenbelt, MD 20771 , USA

Abstract

ABSTRACT Neutron star magnetic field evolution is mediated through the Hall effect and Ohmic dissipation in the crust while ambipolar diffusion is taking place in the core. These effects have been studied in detail in either part of the star, however, their combined, simultaneous evolution and interplay has not been explored in detail yet. Here, we present simulation results of the simultaneous evolution of the magnetic field in the core due to ambipolar diffusion and the crust due to Hall effect and Ohmic decay, under the assumption of axial symmetry. We find that a purely poloidal field generates a toroidal field in the crust, due to the Hall effect, that sinks into the core. A purely toroidal field remains toroidal and spreads into the core and the crust. Finally, for a mixed poloidal–toroidal field, the north–south symmetry is broken due to the Hall effect in the crust, however, ambipolar diffusion, tends to restore it. We examine the role of ambipolar diffusion to the magnetic field decay and we compare the rate of the conversion of magnetic field energy into heat, finding that it enhances the magnetic field decay in neutron stars.

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond the Rotational Deathline: Radio Emission from Ultra-long Period Magnetars;Monthly Notices of the Royal Astronomical Society;2024-08-09

2. Heating of millisecond pulsars by magnetic field decay;Astronomische Nachrichten;2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3