Affiliation:
1. Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, Ciudad de México 04510, México
Abstract
ABSTRACT
We show that the 1D planar ultrarelativistic shock tube problem with an ultrarelativistic polytropic equation of state can be solved analytically for the case of a working surface, i.e. for the case when an initial discontinuity on the hydrodynamical quantities of the problem form two shock waves separating from a contact discontinuity. The procedure is based on the extensive use of the Taub jump conditions for relativistic shock waves, the Taub adiabatic, and performing Lorentz transformations to present the solution in a system of reference adequate for an external observer at rest. The solutions are found using a set of very useful theorems related to the Lorentz factors when transforming between systems of reference. The energy dissipated inside the working surface is relevant for studies of light curves observed in relativistic astrophysical jets and so, we provide a full analytical solution for this phenomenon assuming an ultrarelativistic periodic velocity injected at the base of the jet.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献