Stellar versus Galactic: the intensity of cosmic rays at the evolving Earth and young exoplanets around Sun-like stars

Author:

Rodgers-Lee D1ORCID,Taylor A M2,Vidotto A A1ORCID,Downes T P3

Affiliation:

1. School of Physics, Trinity College Dublin, University of Dublin, College Green, Dublin 2 D02 PN40, Ireland

2. DESY, D-15738 Zeuthen, Germany

3. Centre for Astrophysics & Relativity, School of Mathematical Sciences, Dublin City University, Glasnevin D09 W6Y4, Ireland

Abstract

ABSTRACT Energetic particles, such as stellar cosmic rays, produced at a heightened rate by active stars (like the young Sun) may have been important for the origin of life on Earth and other exoplanets. Here, we compare, as a function of stellar rotation rate (Ω), contributions from two distinct populations of energetic particles: stellar cosmic rays accelerated by impulsive flare events and Galactic cosmic rays. We use a 1.5D stellar wind model combined with a spatially 1D cosmic ray transport model. We formulate the evolution of the stellar cosmic ray spectrum as a function of stellar rotation. The maximum stellar cosmic ray energy increases with increasing rotation, i.e. towards more active/younger stars. We find that stellar cosmic rays dominate over Galactic cosmic rays in the habitable zone at the pion threshold energy for all stellar ages considered ($t_*=0.6\!-\!2.9\,$ Gyr). However, even at the youngest age, $t_*=0.6\,$ Gyr, we estimate that $\gtrsim \, 80$ MeV stellar cosmic ray fluxes may still be transient in time. At ∼1 Gyr when life is thought to have emerged on Earth, we demonstrate that stellar cosmic rays dominate over Galactic cosmic rays up to ∼4 GeV energies during flare events. Our results for t* = 0.6 Gyr (Ω = 4 Ω⊙) indicate that ≲GeV stellar cosmic rays are advected from the star to 1 au and are impacted by adiabatic losses in this region. The properties of the inner solar wind, currently being investigated by the Parker Solar Probe and Solar Orbiter, are thus important for accurate calculations of stellar cosmic rays around young Sun-like stars.

Funder

ERC

SFI

HEA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3